| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| static int nb_temporaries; |
| |
| #define EIGEN_DEBUG_MATRIX_CTOR(MTYPE) { \ |
| if(MTYPE::SizeAtCompileTime==Dynamic) \ |
| nb_temporaries++; \ |
| } |
| |
| #include "main.h" |
| #include <Eigen/Array> |
| |
| #define VERIFY_EVALUATION_COUNT(XPR,N) {\ |
| nb_temporaries = 0; \ |
| XPR; \ |
| if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ |
| VERIFY( (#XPR) && nb_temporaries==N ); \ |
| } |
| |
| template<typename MatrixType> void product_notemporary(const MatrixType& m) |
| { |
| /* This test checks the number of tempories created |
| * during the evaluation of a complex expression */ |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, 1, Dynamic> RowVectorType; |
| typedef Matrix<Scalar, Dynamic, 1> ColVectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols); |
| RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows); |
| ColVectorType vc2 = ColVectorType::Random(cols), cvres(cols); |
| RowMajorMatrixType rm3(rows, cols); |
| |
| Scalar s1 = ei_random<Scalar>(), |
| s2 = ei_random<Scalar>(), |
| s3 = ei_random<Scalar>(); |
| |
| int c0 = ei_random<int>(4,cols-8), |
| c1 = ei_random<int>(8,cols-c0), |
| r0 = ei_random<int>(4,cols-8), |
| r1 = ei_random<int>(8,rows-r0); |
| |
| VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); |
| VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).lazy(), 0); |
| |
| VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0); |
| |
| // NOTE in this case the slow product is used: |
| // FIXME: |
| VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0); |
| |
| VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * m2.adjoint()).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * (m1*s3+m2*s2).adjoint()).lazy(), 1); |
| VERIFY_EVALUATION_COUNT( m3 = ((s1 * m1).adjoint() * s2 * m2).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3 += (s1 * (-m1*s3).adjoint() * (s2 * m2 * s3)).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0); |
| VERIFY_EVALUATION_COUNT( m3 -= (s1 * (m1.transpose() * m2)).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3.noalias() -= s1 * (m1.transpose() * m2), 0); |
| |
| VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) += (-m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint()).lazy() ), 0); |
| VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) -= (s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1)).lazy() ), 0); |
| |
| // NOTE this is because the Block expression is not handled yet by our expression analyser |
| VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) = (s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1)).lazy() ), 1); |
| |
| VERIFY_EVALUATION_COUNT( m3 -= ((s1 * m1).template triangularView<LowerTriangular>() * m2).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template triangularView<UpperTriangular>() * (m2+m2)).lazy(), 1); |
| VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template triangularView<UnitUpperTriangular>() * m2.adjoint()).lazy(), 0); |
| |
| VERIFY_EVALUATION_COUNT( rm3.col(c0) = ((s1 * m1.adjoint()).template triangularView<UnitUpperTriangular>() * (s2*m2.row(c0)).adjoint()).lazy(), 0); |
| |
| VERIFY_EVALUATION_COUNT( m1.template triangularView<LowerTriangular>().solveInPlace(m3), 0); |
| VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<LowerTriangular>().solveInPlace(m3.transpose()), 0); |
| |
| VERIFY_EVALUATION_COUNT( m3 -= ((s1 * m1).adjoint().template selfadjointView<LowerTriangular>() * (-m2*s3).adjoint()).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3 = (s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<UpperTriangular>()).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template selfadjointView<LowerTriangular>() * m2.adjoint()).lazy(), 0); |
| |
| VERIFY_EVALUATION_COUNT( m3.col(c0) = ((s1 * m1).adjoint().template selfadjointView<LowerTriangular>() * (-m2.row(c0)*s3).adjoint()).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3.col(c0) -= ((s1 * m1).adjoint().template selfadjointView<UpperTriangular>() * (-m2.row(c0)*s3).adjoint()).lazy(), 0); |
| |
| VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1) += ((m1.block(r0,r0,r1,r1).template selfadjointView<UpperTriangular>() * (s1*m2.block(r0,c0,r1,c1)) )).lazy(), 0); |
| VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1) = ((m1.block(r0,r0,r1,r1).template selfadjointView<UpperTriangular>() * m2.block(r0,c0,r1,c1) )).lazy(), 0); |
| |
| VERIFY_EVALUATION_COUNT( m3.template selfadjointView<LowerTriangular>().rankUpdate(m2.adjoint()), 0); |
| |
| m3.resize(1,1); |
| VERIFY_EVALUATION_COUNT( m3 = ((m1.block(r0,r0,r1,r1).template selfadjointView<LowerTriangular>() * m2.block(r0,c0,r1,c1) )).lazy(), 0); |
| m3.resize(1,1); |
| VERIFY_EVALUATION_COUNT( m3 = ((m1.block(r0,r0,r1,r1).template triangularView<UnitUpperTriangular>() * m2.block(r0,c0,r1,c1) )).lazy(), 0); |
| } |
| |
| void test_product_notemporary() |
| { |
| int s; |
| for(int i = 0; i < g_repeat; i++) { |
| s = ei_random<int>(16,320); |
| CALL_SUBTEST( product_notemporary(MatrixXf(s, s)) ); |
| s = ei_random<int>(16,120); |
| CALL_SUBTEST( product_notemporary(MatrixXcd(s,s)) ); |
| } |
| } |